A Practitioner’s Guide to MXNet

Xingjian Shi
Hong Kong University of Science and Technology (HKUST)

HKUST CSE Seminar, March 31st, 2017

o Introduction
@ Deep Learning Basics
@ MXNet Highlights
@ MXNet Highlights

e MXNet Basics
@ Getting Started
@ Low-level APIs
@ High-level APIs

e Advanced Techniques
@ Write New Operators
@ Tricks to Debug the Program

0 Summary

Introduction

Outline for section 1

o Introduction
@ Deep Learning Basics
@ MXNet Highlights
@ MXNet Highlights

Introduction
e0

Deep Learning Basics

Overview of Deep Learning

@ Key of Deep Learning

o Hierarchical Model Structure
@ End-to-end Model (Input — Model — Output)

input layer

hidden layer 1~ hidden layer 2

Figure 1: Example of a FNN Figure 2: Example of a RNN

@ State-of-the-art results in many areas:
@ Object Detection
@ Machine Translation
@ Speech Synthesis

Introduction
oe

Deep Learning Basics

Computational Challenges

@ Models are becoming more and more complicated!

Figure 3: The first version of GooglLeNet (Szegedy et al., 2015)

@ Datasets are becoming larger and larger!
o ImageNet, MS-COCO, WMT...
@ Nowadays we rely on Deep Learning Libraries
@ Theano, Caffe, MatConvNet, Torch, CNTK, TensorFlow and
MXNet
o All have their own advantages and disadvantages. None of
them is the best!

Introduction
[]

MXNet Highlights

MXNet Highlights — Popularity

@ MXNet is becoming more and more popular!
@ Stars: > 9000, Rank 5th

@ Fork: > 3300, Rank 4th

@ We've joined Apache Incubator.

Introduction
[eJele]

MXNet Highlights

MXNet Highlights — Efficiency

o Efficient
e Fast on single machine (C++ back-end)
@ Support automatic parallelization
o Linear scaling w.r.t No. machines and No. GPUs

300

+—+ |deal
250 +— AlexNet

-~ +—+ Inception-v3

Z 200 — Resnet-152

o
2 150}
(O]

8 100}
[7p]
50|

% 50 100 150 200 250

GPUs

Figure 4: Scalability experiments on 16x AWS P2.16xlarges. 256 GPUs are used in
total. CUDA 7.5 + CUDNN 5.1.

Introduction
[e] Jele]

MXNet Highlights

MXNet Highlights — Portability

@ Portable
e Front-end in multiple languages (Common back-end)
@ Support multiple operating systems

>
[| |

Figure 5: Part of the languages that are supported.

Introduction
[e]e] o]

MXNet Highlights

MXNet Highlights — Flexibility

@ Flexible
@ Support both imperative programming and declarative
programming
o Imperative Programming — Numpy, Matlab, Torch
o Declarative Programming — Tensorflow, Theano, Caffe
@ Mix the flavor: “Mix-Net”

Example 1: Imperative Programming Example 2: Declarative Programming
import mxnet.ndarray as nd import mxnet.sym as sym
a = nd.ones((4, 4)) import numpy as np
b = nd.ones((4, 4)) a = sym.Variable(’a’, shape=(4, 4))

c a+b b = sym.Variable(’'b’, shape=(4, 4))
print(c.asnumpy()) c=a+b
Compile the executor
exe = c.simple_bind (ctx=mx.cpu())
Run the executor
exe.forward (a=np.ones((4, 4)))
print (exe.outputs[0].asnumpy())

Introduction
[efe]e])

MXNet Highlights

Imperative Programming V.S Declarative Programming

@ Imperative Programming
e Straight-forward. Easy to view the middle level results.
e Example: L-BFGS, Beam Search...
@ Declarative Programming
o Easier to optimize.
o After getting the computational graph (logic), we could
apply rules to simplify the graph. We can also choose the
most efficient implementation to do the real computation.

Example 3: Optimization on the graph—1 Example 4: Optimization on the graph—2
import numpy as np import numpy as np

a = np.random((1000000,)) a = np.random((100, 1))

b = np.exp(a) ¢ = np.random((100, 100))

c = np.log(b) d = np.dot(a, a.T) + ¢

d = np.exp(c) # We could use a single GER call.
print(d)

Optimized

d = np.exp(a)

MXNet Basics

Outline for section 2

9 MXNet Basics
@ Getting Started
@ Low-level APIs
@ High-level APIs

Getting Started

MXNet Basics
[o]

Installation on Python

@ Using pre-compiled packages

Linux, MacOS

pip install mxnet

pip install mxnet-mkl
pip install mxnet-cu75
pip install mxnet-cu80
Windows: will support soon

CPU

CPU with MKL-DNN
GPU with CUDA 7.5
GPU with CUDA 8.0

H= 4 o

@ Compile from source

®© 6 06 ¢

Clone the latest version

git clone https://github.com/dmlc/mxnet.git
Need compiler that supports C++11

CUDA v8.0 + CUDNN v5.1 is the best combination

Use Make or CMake to compile

Install by running setup

cd mxnet/python

python setup.py develop —--user

MXNet Basics
oe

Getting Started

Validate the installation

@ Quick testing

cd mxnet

GPU

nosetests tests/python/gpu/test_operator_gpu.py

only CPU

nosetests tests/python/unittest/test_operator.py
@ Import the package

>>> import mxnet as mx

@ Try the examples

cd mxnet/example/image—-classification
python train_cifarlO0.py —-—-gpus 0

MXNet Basics
@®000000000

Low-level APIs

Overview of Low-level APIs

@ NDArray API

o Imperative programming
@ Symbol + Executor API

o Declarative programming
@ KVStore API

o Key to distributed learning

MXNet Basics
O@00000000

Low-level APIs

NDArray

@ mxnet.ndarray
@ Container similar to numpy.ndarray. Support multiple
running contexts.

>>> import mxnet as mx
>>> import mxnet.ndarray as nd
>>> X = nd.array ([[1, 2, 3], [4, 5, 6]])
>>> X.asnumpy ()
array ([[1., 2., 3.1,
[4., 5., 6.]], dtype=float32)
>>> y = nd.array ([[4, 5, 6], [1, 2, 3]], ctx=mx.gpu(0))
>>> z = nd.array ([[1, 2, 1], [1, 2, 1]], ctx=mx.gpu(1))
>>> x[:] = y.copyto(mx.cpu())
>>> X.asnumpy ()
array ([[4., 5., 6.],
[1., 2., 3.]], dtype=float32)

Example 5: First glance at NDArray

@ Need to use x[:] to make sure that we’ve changed the
content of x instead of creating a new variable.

MXNet Basics
[e]e] lelelelele]le]e]

Low-level APIs

NDArray

@ Support most features (auto-broadcasting, axis) in Numpy

>>> import mxnet as mx
>>> import mxnet.ndarray as nd
>>> X nd.array ([[1, 3, 2], [7, 2, 1]])

>>> y = nd.array([4, 5, 6])
>>> Z =X + Y
>>> z.asnumpy ()
array ([[5., 8., 8.1,
[11., 7., 7.]11, dtype=float32)
>>> nd.argsort(z, axis=0).asnumpy ()

array ([[0., 1., 2.1,
[1., 2., 0.]], dtype=float32)

Example 6: Auto-broadcasing and axis support

@ All OPs will be asynchronous! The engine will take care of
the dependency and try to run them in parallel. We need
synchronization before getting the results.

@ Lots of OPs, http://mxnet.io/api/python/ndarray.html

http://mxnet.io/api/python/ndarray.html

MXNet Basics
O00@000000

Low-level APIs

Symbol + Executor

@ mxnet.symbol

@ Use symbol to construct the logic. We can suggest the
shape of the variable, 0 indicates missing value.

>>> import mxnet as mx

>>> a = mx.sym. Variable(’a’, shape=(3, 2))
>>> b = mx.sym.Variable(’'b’, shape=(3, 0))
>>C=2x*xa+b
>>> c.list_arguments ()
['a’, 'b’]
>>> c.infer_shape ()
([(3L, 2L), (3L, 2L)], [(3L, 2L)], [])
>>> c.eval(a=nd.ones((3, 2)), b=nd.ones((3, 2)))[0].asnumpy ()
array ([[3. 3.1,

[3., 3. I,

[8., 3.]]1, dtype=float32)

Example 7: Automatic shape inference + Eval

MXNet Basics
[ee]ele] Telelele]e]

Low-level APIs

Symbol + Executor

@ Bind NDArrays to a symbol to construct the executor,
which is the main object for computation.

>>> a = mx.sym. Variable(’a’)
>>> b = mx.sym.Variable(’'b"’)
>>>C=2x*xa+b

>>> exe = c.simple_bind(mx.cpu(), a=(2,), b=(2,))
>>> exe.forward(is_train=True)

>>> exe.backward(out_grads=nd.array([—1, 1]))
>>> exe.grad_dict[’a’].asnumpy ()

array ([—2., 2.], dtype=float32)

>>> exe.grad_dict[’b’].asnumpy ()

array ([—1., 1.], dtype=float32)

@ We use Reverse-mode Automatic Differentiation. Also
known as Back-propagation. Compute vector-Jacobian
product.

99(f(x)) __ 99(f(x)) 9f(x)

° ox - Of(x) ox

MXNet Basics
0O0000@0000

Low-level APIs

Symbol + Executor

@ We have symbols that are commonly used in neural
networks.

>>> data = mx.sym.Variable(’'data’)

>>> convl = mx.sym.Convolution (data=data,
num_filter=16,
kernel=(3, 3),
name="conv1")

>>> fc1 = mx.sym.FullyConnected (data=convt,
num_hidden=16,
name="fc1")

>>> fc1.list_arguments ()

['data’, ’convi_weight’, ’convi_bias’,

"fc1_weight’, ’fc1_bias’]

@ The parameters will be automatically created. We can also
explicitly create the parameter symbols.

Low-level APIs

MXNet Basics
0000008000

Symbol + Executor

>>> data = mx.sym. Variable (’data’)

>>> weight = mx.sym. Variable (’weight”)

= mx.sym. Variable ('bias’)

= mx.sym. Convolution (data=data,

>>> bias
>>> convi

>>> convl.list_arguments ()

['data’,

"weight’,

"bias ']

weight=weight,

bias=bias,
num_filter=16,
kernel=(3, 3),

name="conv1")

MXNet Basics
000000000

Low-level APIs

Symbol + Executor

@ We could construct loss symbols by make_loss

>>> data = mx.sym.Variable (’'data’)
>>> label = mx.sym.Variable(’label’)
>>> loss = mx.sym.mean(
mx.sym.softmax_cross_entropy (data=data,
label=label))
>>> loss = mx.sym.make_loss(loss, name="cross_entropy")

@ We can group multiple symbols

>>> data = mx.sym.Variable(’'data’)

>>> target = mx.sym.Variable ('target’)

>>> |2 = mx.sym.mean(mx.sym.square (data — target))
>>> |2 = mx.sym.make_loss (12, name="12")

>>> out = mx.sym.Group([l2, data])

>>> out.list_outputs ()

[’12_output’, ’data_output’]

@ Same set of operations as in NDArray are supported!
Symbol API

http://mxnet.io/api/python/symbol.html#the-symbol-class

MXNet Basics
O0000000e0

Low-level APIs

Symbol + Executor

@ Straight-forward SGD with Low-level API

>>> data = mx.sym.Variable(’data’)

>>> target = mx.sym.Variable(’'target’)

>>> weight = mx.sym. Variable (’weight”)

>>> bias = mx.sym.Variable(’'bias’)

>>> convl = mx.sym.Convolution (data=data,
weight=weight ,
bias=bias ,
num_filter=3,
kernel=(3, 3),
pad=(1, 1),
name="conv1")

>>> |2 = mx.sym.mean(mx.sym.square (convl — target))

>>> |2 = mx.sym.make_loss (12, name="12")

>>> exe = |2.simple_bind(ctx=mx.gpu(), data=(10, 3, 5, 5),

target=(10, 3, 5, 5))

>>> for i in range(10):
exe.foward(is_train=True, data=..., target=...)
exe.backward ()
exe.arg_dict['weight’] —= Ir x exe.grad_dict[weight’]

exe.arg_dict['bias’] —= Ir % exe.grad_dict[bias’]

MXNet Basics
O00000000e

Low-level APIs

KVStore

@ mxnet.kvstore
@ Implementation of Parameter Server (PS)

@ Pull, Push and Update

@ Example: Downpour SGD

Client pull the parameter from the server

o Client compute the gradient

o Client push the gradient to the server

o Server will update the stored parameter once receiving
gradient

@ Use ‘kv.pull()’ and ‘kv.push()’ in MXNet

(]

MXNet Basics
@00000

High-level APIs

Overview of High-level APls

@ Low-level APIs are good if you want to implement some
brand new algorithms. E.g, implement new distributed
machine learning algorithms.

@ Just some standard training/testing scheme?
@ Use high-level APl — mx.mod.Module

MXNet Basics
[o] lelelele)

High-level APIs

Module

@ mxnet.module
@ First, use symbol API to create your model.

data=mx.sym. Variable ('data’)

fc1=mx.sym. FullyConnected (data ,name="fc1’ ,num_hidden=128)
act1=mx.sym. Activation (fc1 ,name="relul’,act_type="relu’)
fc2=mx.sym. FullyConnected (act1 ,name="fc2 ' ,num_hidden=10)
out=mx.sym. SoftmaxOutput(fc2 ,name="softmax ")

@ Next, feed a symbol into Module.

create a module by given a Symbol
mod = mx.mod.Module (out)

@ Now you can use Module APIs.

MXNet Basics
[e]e] lelele)

High-level APIs

Module

@ mxnet.module
@ First, use symbol API to create your model.

data=mx.sym. Variable ('data’)

fc1=mx.sym. FullyConnected (data ,name="fc1’ ,num_hidden=128)
act1=mx.sym. Activation (fc1 ,name="relul’,act_type="relu’)
fc2=mx.sym. FullyConnected (act1 ,name="fc2 ' ,num_hidden=10)
out=mx.sym. SoftmaxOutput(fc2 ,name="softmax ")

@ Next, feed a symbol into Module.

@ Automatic data parallel with multiple GPUs in a single
machine.

create a module by given a Symbol
mod = mx.mod.Module (out, ctx=[mx.gpu(0), mx.gpu(1), ...])

@ Now, you can use Module APIs.

MXNet Basics
[e]e]e] lele)

High-level APIs

Module

@ Then, allocate memory by given input shapes and initialize
the module:

mod. bind (data_shapes=data.provide_data,
label_shapes=data.provide_label)

initialize parameters with the default initializer

mod. init_params ()

@ Now, you can train and predict.
o Call high-level API

mod. fit (data,num_epoch=10, ...) # train
mod. predict (new_data) # predict on new data

o Perform step-by-step computations

forward on the provided data batch

mod. forward (data_batch)

backward to calculate the gradients

mod. backward ()

update parameters using the default optimizer
mod. update ()

High-level APIs

MXNet Basics
[e]e]ele] o)

Standard Training/Testing Logic

@ Training
sym = symbol_builder(ctx=[mx.gpu(0), mx.gpu(1), ...])
net = build_module (sym)
for i in range (TOTAL_TRIAN_BATCH):
training_batch = draw_batch() # data + label
net.forward_backward (data_batch=training_batch)
net.update ()
logging.info (...) # Log the statistics
if (i + 1) % SAVE_ITER ==
net.save_checkpoint(prefix="model", epoch=i)
@ Testing

net = mx.mod.Module.load(prefix="model", epoch=1000)
for i in range (TOTAL TEST_BATCH):
testing_batch = draw_batch() # data
net.forward(is_train=False, data_batch=testing_batch)
outputs = net.get_outputs ()
loss += loss_function (outputs, label)
logging.info(loss) # Log the loss

MXNet Basics
00000e

High-level APIs

CNN and RNN

@ CNN
Use the given symbols to construct the loss.
Sample AlexNet

@ RNN

The key is to share the parameter symbols. Following is
RNN-tanh.
weight = mx.sym. Variable ('weight ")

bias = mx.sym.Variable ('bias’)
state = mx.sym.zeros (shape=(0, 0))

for i in range(10):
state = mx.sym. FullyConnected (
data=mx.sym.Concat(data[i], state, num_args=2),
weight=weight,
bias=bias,

num_hidden=100)
state = mx.sym.tanh(state)

Link to RNN Cells in MXNet

https://github.com/dmlc/mxnet/blob/master/example/image-classification/symbols/alexnet.py
https://github.com/dmlc/mxnet/blob/master/python/mxnet/rnn/rnn_cell.py

Advanced Techniques

Outline for section 3

e Advanced Techniques
@ Write New Operators
@ Tricks to Debug the Program

Advanced Techniques
[]

Write New Operators

Write New Operators

@ Use CustomOp in the front-end language (i.e., Python)
@ Can be very fast (use mx.nd)
@ Can also be relatively slow (use numpy)
@ Use C++ (CUDA).
o Gain best performance
@ Operator testing
@ Use functions in mx.test_utils to automatically check the
correctness of the forward and backward pass

e We support automatic gradient checker using central
difference.

from mxnet.test_utils import check_numeric_gradient
check_numeric_gradient (YOUR SYMBOL, location=INPUT_VALUES)

Advanced Techniques
L]

Tricks to Debug the Program

Tricks to Debug the Program

@ Use CustomOps to view the mid-level result

o Create some special ops that works like an identity mapping
@ Use ‘asnumpy()‘ in the CustomOp to synchronize

symil = ...

Insert our debugging OP
sym1 custom_debug (sym1)
sym2 ...symi ...

@ Visualize Gradient Statistics

o Gradient Norm, Uphill Steps, ...
e Can be implemented in MXNet using Imperative APIs

Summary

Outline for section 4

e Summary

Summary

Summary

@ MXNet is efficient, portable and flexible

@ NDArray for imperative programming, Symbol + Executor
for declarative programming, KVStore for distributed
learning

@ Module is used as a high level wrapper of the network

@ CustomOp can be implemented via Python/C++ and can
be used for debugging

	Introduction
	Deep Learning Basics
	MXNet Highlights
	MXNet Highlights

	MXNet Basics
	Getting Started
	Low-level APIs
	High-level APIs

	Advanced Techniques
	Write New Operators
	Tricks to Debug the Program

	Summary

