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Deep Learning Basics

Overview of Deep Learning

Key of Deep Learning

Hierarchical Model Structure
End-to-end Model (Input → Model → Output)

Figure 1: Example of a FNN Figure 2: Example of a RNN

State-of-the-art results in many areas:
Object Detection
Machine Translation
Speech Synthesis
......
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Deep Learning Basics

Computational Challenges

Models are becoming more and more complicated!

Figure 3: The first version of GoogLeNet (Szegedy et al., 2015)

Datasets are becoming larger and larger!
ImageNet, MS-COCO, WMT...

Nowadays we rely on Deep Learning Libraries
Theano, Caffe, MatConvNet, Torch, CNTK, TensorFlow and
MXNet
All have their own advantages and disadvantages. None of
them is the best!
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MXNet Highlights

MXNet Highlights – Popularity

MXNet is becoming more and more popular!
Stars: > 9000, Rank 5th
Fork: > 3300, Rank 4th
We’ve joined Apache Incubator.
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MXNet Highlights

MXNet Highlights – Efficiency

Efficient
Fast on single machine (C++ back-end)
Support automatic parallelization
Linear scaling w.r.t No. machines and No. GPUs

Figure 4: Scalability experiments on 16x AWS P2.16xlarges. 256 GPUs are used in
total. CUDA 7.5 + CUDNN 5.1.
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MXNet Highlights

MXNet Highlights – Portability

Portable
Front-end in multiple languages (Common back-end)
Support multiple operating systems

Figure 5: Part of the languages that are supported.



9/34

Introduction MXNet Basics Advanced Techniques Summary

MXNet Highlights

MXNet Highlights – Flexibility

Flexible
Support both imperative programming and declarative
programming
Imperative Programming → Numpy, Matlab, Torch
Declarative Programming → Tensorflow, Theano, Caffe
Mix the flavor: “Mix-Net”

Example 1: Imperative Programming

impor t mxnet . ndarray as nd
a = nd . ones ( ( 4 , 4 ) )
b = nd . ones ( ( 4 , 4 ) )
c = a + b
p r i n t ( c . asnumpy ( ) )

Example 2: Declarative Programming

impor t mxnet . sym as sym
impor t numpy as np
a = sym . Var iab le ( ’ a ’ , shape =(4 , 4 ) )
b = sym . Var iab le ( ’ b ’ , shape =(4 , 4 ) )
c = a + b
# Compile the executor
exe = c . s imple_bind ( c t x=mx. cpu ( ) )
# Run the executor
exe . forward ( a=np . ones ( ( 4 , 4 ) ) )
p r i n t ( exe . outputs [ 0 ] . asnumpy ( ) )
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MXNet Highlights

Imperative Programming V.S Declarative Programming

Imperative Programming
Straight-forward. Easy to view the middle level results.
Example: L-BFGS, Beam Search...

Declarative Programming
Easier to optimize.
After getting the computational graph (logic), we could
apply rules to simplify the graph. We can also choose the
most efficient implementation to do the real computation.

Example 3: Optimization on the graph–1

impor t numpy as np
a = np . random ((1000000 , ) )
b = np . exp ( a )
c = np . log ( b )
d = np . exp ( c )
p r i n t ( d )
# Optimized
d = np . exp ( a )

Example 4: Optimization on the graph–2

impor t numpy as np
a = np . random ((100 , 1 ) )
c = np . random ((100 , 100))
d = np . dot ( a , a . T ) + c
# We could use a s i n g l e GER c a l l .
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Getting Started

Installation on Python

Using pre-compiled packages
Linux, MacOS
pip install mxnet # CPU
pip install mxnet-mkl # CPU with MKL-DNN
pip install mxnet-cu75 # GPU with CUDA 7.5
pip install mxnet-cu80 # GPU with CUDA 8.0
Windows: will support soon

Compile from source
Clone the latest version
git clone https://github.com/dmlc/mxnet.git
Need compiler that supports C++11
CUDA v8.0 + CUDNN v5.1 is the best combination
Use Make or CMake to compile
Install by running setup
cd mxnet/python
python setup.py develop --user
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Getting Started

Validate the installation

Quick testing
cd mxnet
# GPU
nosetests tests/python/gpu/test_operator_gpu.py
# Only CPU
nosetests tests/python/unittest/test_operator.py

Import the package
>>> impor t mxnet as mx

Try the examples
cd mxnet/example/image-classification
python train_cifar10.py --gpus 0
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Low-level APIs

Overview of Low-level APIs

NDArray API
Imperative programming

Symbol + Executor API
Declarative programming

KVStore API
Key to distributed learning
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Low-level APIs

NDArray

mxnet.ndarray
Container similar to numpy.ndarray. Support multiple
running contexts.

>>> impor t mxnet as mx
>>> impor t mxnet . ndarray as nd
>>> x = nd . ar ray ( [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] ] )
>>> x . asnumpy ( )
ar ray ( [ [ 1 . , 2 . , 3 . ] ,

[ 4 . , 5 . , 6 . ] ] , dtype= f l o a t 3 2 )
>>> y = nd . ar ray ( [ [ 4 , 5 , 6 ] , [ 1 , 2 , 3 ] ] , c t x=mx. gpu ( 0 ) )
>>> z = nd . ar ray ( [ [ 1 , 2 , 1 ] , [ 1 , 2 , 1 ] ] , c t x=mx. gpu ( 1 ) )
>>> x [ : ] = y . copyto (mx. cpu ( ) )
>>> x . asnumpy ( )
ar ray ( [ [ 4 . , 5 . , 6 . ] ,

[ 1 . , 2 . , 3 . ] ] , dtype= f l o a t 3 2 )

Example 5: First glance at NDArray

Need to use x[:] to make sure that we’ve changed the
content of x instead of creating a new variable.
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Low-level APIs

NDArray

Support most features (auto-broadcasting, axis) in Numpy
>>> impor t mxnet as mx
>>> impor t mxnet . ndarray as nd
>>> x = nd . ar ray ( [ [ 1 , 3 , 2 ] , [ 7 , 2 , 1 ] ] )
>>> y = nd . ar ray ( [ 4 , 5 , 6 ] )
>>> z = x + y
>>> z . asnumpy ( )
ar ray ( [ [ 5 . , 8 . , 8 . ] ,

[ 11 . , 7 . , 7 . ] ] , dtype= f l o a t 3 2 )
>>> nd . a rgso r t ( z , ax is =0 ) . asnumpy ( )
ar ray ( [ [ 0 . , 1 . , 2 . ] ,

[ 1 . , 2 . , 0 . ] ] , dtype= f l o a t 3 2 )

Example 6: Auto-broadcasing and axis support

All OPs will be asynchronous! The engine will take care of
the dependency and try to run them in parallel. We need
synchronization before getting the results.
Lots of OPs, http://mxnet.io/api/python/ndarray.html

http://mxnet.io/api/python/ndarray.html
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Low-level APIs

Symbol + Executor

mxnet.symbol
Use symbol to construct the logic. We can suggest the
shape of the variable, 0 indicates missing value.

>>> impor t mxnet as mx
>>> a = mx. sym . Var iab le ( ’ a ’ , shape =(3 , 2 ) )
>>> b = mx. sym . Var iab le ( ’ b ’ , shape =(3 , 0 ) )
>>> c = 2 ∗ a + b
>>> c . l i s t_a rguments ( )
[ ’ a ’ , ’ b ’ ]
>>> c . in fer_shape ( )
( [ ( 3 L , 2L ) , (3L , 2L ) ] , [ ( 3 L , 2L ) ] , [ ] )
>>> c . eva l ( a=nd . ones ( ( 3 , 2 ) ) , b=nd . ones ( ( 3 , 2 ) ) ) [ 0 ] . asnumpy ( )
ar ray ( [ [ 3 . , 3 . ] ,

[ 3 . , 3 . ] ,
[ 3 . , 3 . ] ] , dtype= f l o a t 3 2 )

Example 7: Automatic shape inference + Eval
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Low-level APIs

Symbol + Executor

Bind NDArrays to a symbol to construct the executor,
which is the main object for computation.

>>> a = mx. sym . Var iab le ( ’ a ’ )
>>> b = mx. sym . Var iab le ( ’ b ’ )
>>> c = 2 ∗ a + b
>>> exe = c . s imple_bind (mx. cpu ( ) , a = (2 , ) , b = ( 2 , ) )
>>> exe . forward ( i s _ t r a i n =True )
>>> exe . backward ( out_grads=nd . ar ray ([−1 , 1 ] ) )
>>> exe . g rad_d ic t [ ’ a ’ ] . asnumpy ( )
ar ray ( [ −2. , 2 . ] , dtype= f l o a t 3 2 )
>>> exe . g rad_d ic t [ ’ b ’ ] . asnumpy ( )
ar ray ( [ −1. , 1 . ] , dtype= f l o a t 3 2 )

We use Reverse-mode Automatic Differentiation. Also
known as Back-propagation. Compute vector-Jacobian
product.

∂g(f (x))
∂x = ∂g(f (x))

∂f (x)
∂f (x)
∂x
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Low-level APIs

Symbol + Executor

We have symbols that are commonly used in neural
networks.

>>> data = mx. sym . Var iab le ( ’ data ’ )
>>> conv1 = mx. sym . Convolut ion ( data=data ,

n u m _ f i l t e r =16 ,
ke rne l =(3 , 3 ) ,
name=" conv1 " )

>>> fc1 = mx. sym . Ful lyConnected ( data=conv1 ,
num_hidden=16 ,
name=" fc1 " )

>>> fc1 . l i s t_a rguments ( )
[ ’ data ’ , ’ conv1_weight ’ , ’ conv1_bias ’ ,

’ fc1_weight ’ , ’ f c1_b ias ’ ]

The parameters will be automatically created. We can also
explicitly create the parameter symbols.
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Low-level APIs

Symbol + Executor

>>> data = mx. sym . Var iab le ( ’ data ’ )
>>> weight = mx. sym . Var iab le ( ’ weight ’ )
>>> bias = mx. sym . Var iab le ( ’ b ias ’ )
>>> conv1 = mx. sym . Convolut ion ( data=data ,

weight=weight ,
b ias=bias ,
n u m _ f i l t e r =16 ,
ke rne l =(3 , 3 ) ,
name=" conv1 " )

>>> conv1 . l i s t_a rguments ( )
[ ’ data ’ , ’ weight ’ , ’ b ias ’ ]
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Low-level APIs

Symbol + Executor

We could construct loss symbols by make_loss
>>> data = mx. sym . Var iab le ( ’ data ’ )
>>> l a b e l = mx. sym . Var iab le ( ’ l a b e l ’ )
>>> loss = mx. sym . mean(

mx. sym . sof tmax_cross_entropy ( data=data ,
l a b e l = l a b e l ) )

>>> loss = mx. sym . make_loss ( loss , name=" cross_entropy " )

We can group multiple symbols
>>> data = mx. sym . Var iab le ( ’ data ’ )
>>> t a r g e t = mx. sym . Var iab le ( ’ t a r g e t ’ )
>>> l 2 = mx. sym . mean(mx. sym . square ( data − t a r g e t ) )
>>> l 2 = mx. sym . make_loss ( l2 , name=" l 2 " )
>>> out = mx. sym . Group ( [ l2 , data ] )
>>> out . l i s t _ o u t p u t s ( )
[ ’ l 2_ou tpu t ’ , ’ data_output ’ ]

Same set of operations as in NDArray are supported!
Symbol API

http://mxnet.io/api/python/symbol.html#the-symbol-class
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Low-level APIs

Symbol + Executor

Straight-forward SGD with Low-level API
>>> data = mx. sym . Var iab le ( ’ data ’ )
>>> t a r g e t = mx. sym . Var iab le ( ’ t a r g e t ’ )
>>> weight = mx. sym . Var iab le ( ’ weight ’ )
>>> bias = mx. sym . Var iab le ( ’ b ias ’ )
>>> conv1 = mx. sym . Convolut ion ( data=data ,

weight=weight ,
b ias=bias ,
n u m _ f i l t e r =3 ,
ke rne l =(3 , 3 ) ,
pad =(1 , 1 ) ,
name=" conv1 " )

>>> l 2 = mx. sym . mean(mx. sym . square ( conv1 − t a r g e t ) )
>>> l 2 = mx. sym . make_loss ( l2 , name=" l 2 " )
>>> exe = l 2 . s imple_bind ( c t x=mx. gpu ( ) , data =(10 , 3 , 5 , 5 ) ,

t a r g e t =(10 , 3 , 5 , 5 ) )
>>> f o r i i n range ( 1 0 ) :

exe . foward ( i s _ t r a i n =True , data = . . . , t a r g e t = . . . )
exe . backward ( )
exe . a rg_d i c t [ ’ weight ’ ] −= l r ∗ exe . g rad_d ic t [ ’ weight ’ ]
exe . a rg_d i c t [ ’ b ias ’ ] −= l r ∗ exe . g rad_d ic t [ ’ b ias ’ ]
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Low-level APIs

KVStore

mxnet.kvstore
Implementation of Parameter Server (PS)
Pull, Push and Update
Example: Downpour SGD

Client pull the parameter from the server
Client compute the gradient
Client push the gradient to the server
Server will update the stored parameter once receiving
gradient

Use ‘kv.pull()’ and ‘kv.push()’ in MXNet
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High-level APIs

Overview of High-level APIs

Low-level APIs are good if you want to implement some
brand new algorithms. E.g, implement new distributed
machine learning algorithms.
Just some standard training/testing scheme?
Use high-level API → mx.mod.Module
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High-level APIs

Module

mxnet.module
First, use symbol API to create your model.

data=mx. sym . Var iab le ( ’ data ’ )
fc1=mx. sym . Ful lyConnected ( data , name= ’ fc1 ’ , num_hidden=128)
act1=mx. sym . A c t i v a t i o n ( fc1 , name= ’ re lu1 ’ , ac t_ type= ’ r e l u ’ )
fc2=mx. sym . Ful lyConnected ( act1 , name= ’ fc2 ’ , num_hidden=10)
out=mx. sym . SoftmaxOutput ( fc2 , name= ’ softmax ’ )

Next, feed a symbol into Module.
# create a module by given a Symbol
mod = mx.mod. Module ( out )

Now you can use Module APIs.
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High-level APIs

Module

mxnet.module
First, use symbol API to create your model.

data=mx. sym . Var iab le ( ’ data ’ )
fc1=mx. sym . Ful lyConnected ( data , name= ’ fc1 ’ , num_hidden=128)
act1=mx. sym . A c t i v a t i o n ( fc1 , name= ’ re lu1 ’ , ac t_ type= ’ r e l u ’ )
fc2=mx. sym . Ful lyConnected ( act1 , name= ’ fc2 ’ , num_hidden=10)
out=mx. sym . SoftmaxOutput ( fc2 , name= ’ softmax ’ )

Next, feed a symbol into Module.
Automatic data parallel with multiple GPUs in a single
machine.

# create a module by given a Symbol
mod = mx.mod. Module ( out , c t x =[mx. gpu ( 0 ) , mx. gpu ( 1 ) , . . . ] )

Now, you can use Module APIs.
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High-level APIs

Module

Then, allocate memory by given input shapes and initialize
the module:

mod. bind ( data_shapes=data . provide_data ,
label_shapes=data . p rov ide_ labe l )

# i n i t i a l i z e parameters w i th the d e f a u l t i n i t i a l i z e r
mod. in i t_params ( )

Now, you can train and predict.
Call high-level API

mod. f i t ( data , num_epoch=10 , . . . ) # t r a i n
mod. p r e d i c t ( new_data ) # p r e d i c t on new data

Perform step-by-step computations
# forward on the provided data batch
mod. forward ( data_batch )
# backward to c a l c u l a t e the grad ien ts
mod. backward ( )
# update parameters using the d e f a u l t op t im ize r
mod. update ( )
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High-level APIs

Standard Training/Testing Logic

Training
sym = symbol_bui lder ( c t x =[mx. gpu ( 0 ) , mx. gpu ( 1 ) , . . . ] )
net = bui ld_module (sym)
f o r i i n range (TOTAL_TRIAN_BATCH ) :

t r a i n i n g _ b a t c h = draw_batch ( ) # data + l a b e l
net . forward_backward ( data_batch= t r a i n i n g _ b a t c h )
net . update ( )
logg ing . i n f o ( . . . ) # Log the s t a t i s t i c s
i f ( i + 1) % SAVE_ITER == 0:

net . save_checkpoint ( p r e f i x = " model " , epoch= i )

Testing
net = mx.mod. Module . load ( p r e f i x = " model " , epoch=1000)
f o r i i n range (TOTAL_TEST_BATCH ) :

tes t i ng_ba tch = draw_batch ( ) # data
net . forward ( i s _ t r a i n =False , data_batch= tes t i ng_ba tch )
outputs = net . get_outputs ( )
loss += l o s s _ f u n c t i o n ( outputs , l a b e l )

logg ing . i n f o ( loss ) # Log the loss
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High-level APIs

CNN and RNN

CNN
Use the given symbols to construct the loss.
Sample AlexNet
RNN
The key is to share the parameter symbols. Following is
RNN-tanh.

weight = mx. sym . Var iab le ( ’ weight ’ )
b ias = mx. sym . Var iab le ( ’ b ias ’ )
s t a t e = mx. sym . zeros ( shape =(0 , 0 ) )
f o r i i n range ( 1 0 ) :

s t a t e = mx. sym . Ful lyConnected (
data=mx. sym . Concat ( data [ i ] , s ta te , num_args =2) ,
weight=weight ,
b ias=bias ,
num_hidden=100)

s ta te = mx. sym . tanh ( s ta te )

Link to RNN Cells in MXNet

https://github.com/dmlc/mxnet/blob/master/example/image-classification/symbols/alexnet.py
https://github.com/dmlc/mxnet/blob/master/python/mxnet/rnn/rnn_cell.py
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Write New Operators

Write New Operators

Use CustomOp in the front-end language (i.e., Python)
Can be very fast (use mx.nd)
Can also be relatively slow (use numpy)

Use C++ (CUDA).
Gain best performance

Operator testing
Use functions in mx.test_utils to automatically check the
correctness of the forward and backward pass
We support automatic gradient checker using central
difference.

from mxnet . t e s t _ u t i l s impor t check_numeric_gradient
check_numeric_gradient (YOUR_SYMBOL, l o c a t i o n =INPUT_VALUES)
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Tricks to Debug the Program

Tricks to Debug the Program

Use CustomOps to view the mid-level result
Create some special ops that works like an identity mapping
Use ‘asnumpy()‘ in the CustomOp to synchronize

sym1 = . . .
# I n s e r t our debugging OP
sym1 = custom_debug (sym1)
sym2 = . . . sym1 . . .

Visualize Gradient Statistics
Gradient Norm, Uphill Steps, ...
Can be implemented in MXNet using Imperative APIs
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Summary

MXNet is efficient, portable and flexible
NDArray for imperative programming, Symbol + Executor
for declarative programming, KVStore for distributed
learning
Module is used as a high level wrapper of the network
CustomOp can be implemented via Python/C++ and can
be used for debugging
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